How To Make Lighter and Thinner Magnesium Components?

0 Views
What do you think about this article? Rate it using the stars above and let us know what you think in the comments below.
Summary: The most common methods to produce magnesium parts are die casting and thixomolding processes. However, these runner and gating processes provide a low material yield of only 30% for thin-wall casting and can only produce thin walls of between 0.7mm to 1.2mm.

Magnesium is the lightest structural material offering very good damping characteristics, weldability and excellent shielding against electro-magnetic interferance, and is unlimited in supply. It has been an excellent material for making portable electronic and telecommunication devices, and automotive and aerospace equipment such as MD player casings, chassis for cell phones, video cameras and notebook computers, automotive gear housings, car wheels and engine blocks. The most common methods to produce magnesium parts are die casting and thixomolding processes. However, these runner and gating processes provide a low material yield of only 30% for thin-wall casting and can only produce thin walls of between 0.7mm to 1.2mm. If we can form magnesium parts from sheet metal just like metal stamping of steel and aluminum parts, we can achieve better material yield of about 80% and possibly safer operation due to the lower processing temperature. However, magnesium is known to be non-formable as it is very resistant to deformation due to its hexagonal close-packed structure. The only way is warm forming of magnesium as deformation of magnesium above 225 degrees Celsius will cause additional slip planes to become operative. Extensive process research in this area have resulted in a few warm forming hydraulic presses available in the market for draw forming. Recently, research in warm draw forming of magnesium to make cell phone chassis has successfully shown that 0.4mm thin walls can be achieved consistently. Metallographic tests of the chassis have also demonstrated that there is zero porosity and increased rigidity. While the current warm forming press systems are complicated to operate as they require the preliminary building of stroke and force profiles for the specific products using data acquisition modules and forming simulation softwares, the increased replacement of aluminum and plastics with magnesium for handheld electronic devices may well accelerate this process. Progressive early adopters of this technology would have a first mover advantage in the competitive global manufacturing industry.
If this article has helped you in some way, will you say thanks by sharing it through a share, like, a link, or an email to someone you think would appreciate the reference.



EmploymentCrossing was helpful in getting me a job. Interview calls started flowing in from day one and I got my dream offer soon after.
Jeremy E - Greenville, NC
  • All we do is research jobs.
  • Our team of researchers, programmers, and analysts find you jobs from over 1,000 career pages and other sources
  • Our members get more interviews and jobs than people who use "public job boards"
Shoot for the moon. Even if you miss it, you will land among the stars.
SportsAndRecreationCrossing - #1 Job Aggregation and Private Job-Opening Research Service — The Most Quality Jobs Anywhere
SportsAndRecreationCrossing is the first job consolidation service in the employment industry to seek to include every job that exists in the world.
Copyright © 2024 SportsAndRecreationCrossing - All rights reserved. 21